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Abstract

We analyze a planar lens with negative index of refraction to develop analytical ex-

pressions describing EM evanescent and propagating waves. Resolution, field magnitude,

and field intensity of the superlens is identical for equal absorption and gain parameters.

Subwavelength resolution is achieved by the Planar NIM lens in the near-field regime due

to amplification and recovery of evanescent field components. A delta source Green’s

function and exact transfer functions for the system were used to define the transition to

diffraction limited imaging behavior as a function of system absorption and size. Far-field

analysis was performed by calculating fields using a Fresnel integral to show asymmetric

field confinement and diffraction limited resolution.

Introduction

Optical imaging provides important physical information about objects and their surround-

ings. Geometrical optics images objects by focusing light from a source through lenses, after

which light meets back at a pre-determined location to make an image. Unfortunately, geomet-

rical optics is limited by the inherent properties of light. When a plane wave goes through a

slit the waves spread out in a spherical pattern. Huygens principle explains this phenomenon

by stating that light waves are comprised of individual spherical waves existing at the crests of

planar wavefronts. The spreading out of light is referred to as diffraction. Due to the diffractive

nature of light, geometrical optics has a fundamental limit, called the diffraction limit, which

states that one can only image an object that has feature sizes on the order of the wavelength

of source light used to illuminate it.

In the future it could be possible to image single protein molecules with visible light using

technology that outperforms diffraction limited imaging systems. Hopefully a collaborative effort

will help scientists find materials that allow us to physically see molecular behavior. The index

of refraction is a measure of material response to external electric and magnetic fields.
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n = ±√εµ (1)

Conventional optical materials have a positive index of refraction, but the square root in Eq

(1) shows that n values could be either positive or negative. If both ε and µ are simultaneously

negative, then a negative index of refraction (NIM) is the correct physical assignment. [1]

Thus far researchers at UC Berkeley and Maryland can resolve objects that are 200nm in size

[2, 3], and hopefully future endeavors into the development of NIM technology will generate new

physics.

Compactness, and extreme increases in speed are important new reasons why optics should

be used to move modern technology forward. Optical computing may soon be realized as photon

transmission can be switched on and off using all-optical transistors in a non-linear photonic

crystal. [4] Considerable effort is being put forth to find new optical materials and waveguide

structures that allow scientists to control the storage and transmission of light. Negative index

of refraction materials top the list, as they enable subwavelength field confinement which could

be used for data storage and near-field microscopy applications.

The phase velocity of EM waves moving in negative index material opposes the propagation

direction while the energy moves in the propagation direction. Interesting NIM electrodynamic

properties resulting from negative phase velocity are: a reversed doppler shift, inverse Snell’s

law, and optically perfect lenses. In particular, inverse Snell’s law is shown when NIM systems

bend light so the refraction occurs on the same side of the surface normal as the incident source.

[1, 5] So far NIM technology has enabled researchers to image with 60 nm half pitch resolution,

which was one sixth of the illumination wavelength. [6]

The elusiveness of NIM is due to no known naturally occurring isotropic materials having

simultaneously negative ε and µ at the same frequency. Metamaterials derive their properties

from physical structure instead of composition, and are commonly used for NIM devices. There

have been experimental observations of negative refraction at 10.5 GHz in metamaterials. [7]

Negative permittivity and induced magnetic resonance have been used in arrays of metallic

split rings to achieve negative refraction at 100 THz. [8] Structures containing metal-dielectric

layers and split ring resonators have been engineered to achieve negative ε and µ at microwave,
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near-infrared, and visible frequencies. [9, 10]

The superlens is a planar lens with index of refraction n ' −1, where ε = −1 ± iε′′, and

µ = −1±iµ′′. Work describing the dielectric constant in tensor form will be presented elsewhere.

The imaginary part of the permittivity and permeability terms represent the absorption or

gain of the system. Many research groups have shown that the near-field superlens resolution

outperforms the diffraction limit, while the far-field system region has resolution limitations.

[1, 5, 6, 7, 11, 16, 19]

The first purpose of this work is to discuss the geometry of the superlens system in the near-

field regime and describe the resolution. Our near-field models are constructed from a single

slit model using a transfer function method which is derived from transmission and reflection

coefficients. The next topic of discussion will be the transition to far-field behavior for the system

by imaging a point source as the size of the system becomes larger. We will describe the critical

lens thickness as a function of absorption where the evanescent waves become smaller than the

propagating waves. Finally, we will solve a Fresnel integral for a point source to show that there

is asymmetric field confinement at the image location when the system is in the far-field regime

resulting in loss of subwavelength resolution capabilities.

One interesting aspect of our work that we have yet to explore is applications for controlled

directional flow of surface plasmons at the lens boundaries. Our time-domain animations show

surface plasmons exist at each lens boundary when the system is in the near-field regime. The

direction of these waves can be controlled by introducing a source into the system. One inter-

esting approach entails optimizing the system for surface plasmon formation to see whether or

not coupling to the system could create a new optical switching device.

Near-Field Single Slit (NIM) Imaging

All of our models describe TM Polarized electromagnetic field solutions obtained by the

summation of field terms in wavevector space. For the single slit the source term is derived from

a fourier integral over the width of the slit. By defining the width of the slit as w, the source

equation or wavevector spectrum for the single slit can be calculated as shown below.

3



a(kx) =
∫ w/2

−w/2
eikxx = 2

sin(w · kx/2)

kx

(2)

We use Maxwell’s equations with dielectric boundary conditions to solve for reflection and

transmission coefficients. To calculate field solution we first separate the system into three

regions. The first region is before the lens, the second inside the lens, and the third behind the

lens. Requiring the surface parallel components of the ~E and ~H fields to be continuous across

each lens boundary provides enough information to solve for the four reflection and transmission

coefficients. By using the wavevector spectrum shown above we can write field solutions in each

region as summations in k-space.

~H1 =
∑

kx

a(kx) [exp[i(kz1z + kxx− ωt)] + r1 exp[i(−kz1z + kxx− ωt)]] (3)

~H2 =
∑

kx

a(kx) [t2 exp[i(kz2z + kxx− ωt)] + r2 exp[i(−kz2z + kxx− ωt)]] (4)

~H3 =
∑

kx

a(kx) [t3 exp[i(kz1z + kxx− ωt)]] (5)

The planar lens focal distance is defined as the length between the source and the front lens

interface. In our simulations we label the focal distance with the variable a. The lens thickness

of the system is labelled b. Geometric optics shows that the image location for the planar NIM

lens is at a distance (b− a) behind the lens. For a real image to exist, the lens thickness must

be greater than or equal to the focal distance. We use TM polarized light sources for all models

presented in this work. By using the dispersion relationship,

k2 = n2ω2

c2
(6)

the propagation wave vector can be given by the expression

kz =

√
n2ω2

c2
− kx

2 (7)

The resolution limit in optics is caused by diffraction, or the spreading out of waves. As seen
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from equation 7, once kx
2 becomes greater than n2ω2/c2, the propagating wavevector becomes

complex. Imaginary kz values correspond to evanescent waves that exponentially decay away

from a source. In order to image small features one must use large kx values due to the fact

that kx is inversely proportional to wavelength. Therefore, the resolution limit in conventional

optics is proportional to the wavelength of the source. One way to overcome the diffraction limit

is to position a microscope in the near-field in order to measure the evanescent waves before

they have decayed beyond detection. The resolution of near-field microscopes is on the order of

∆ ≈ 2a. [12]

Figure 1: General Ray Diagram for the Planar NIM Superlens. a) Image locate is at a distance
(b − a) behind the lens. When b = 2a the system is in the symmetric configuration. b) When
a = b the image is located at the back lens interface. This is the optimal lens configuration.

Spacial field expressions can be written as a linear combination of plane waves as shown in

Eqs(3, 4, 5). It is equivalent to calculate analytical field solutions in k-space using the wavevector

spectrum a(kx) to represent the source information, and a transfer function τ(x, z, ω, kx) to

account for the imaging system contribution. [11, 13, 14, 15]

Hy(x, z, t) =
∫

a(kx)τ(x, z, ω, kx)e
−iωtdkx (8)

Between the source and the front lens interface, the transfer function describing the y compo-

nent of the H-Field is shown in Eq (9). This transfer function accounts for incident, reflected, and

scattered field components. For TM waves, the transfer-in function represents the y component

of the H-field inside the superlens system by including transmission and reflection information.

Likewise, a transfer-out function describes the y component of the H-field after the back lens

interface. [16] All transfer functions shown below represent series solutions of exact equations
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Figure 2: a) Planar NIM lens ray diagram where the focal distance is a, and the lens thickness
is b = 2a. The image location is at a distance of (b − a) behind the lens. To create an image
a ≤ b. The grey region represents the planar NIM superlens. b) H-Field intensity plot for slit
width = 0.25λ, focal distance a = 2.0λ, lens thickness b = 4.0λ, image location = 8.0λ. c)
H-Field intensity plot for slit width = 0.25λ, focal distance a = 0.5λ, lens thickness b = 1.0λ,
image location = 2.0λ. d) H-Field intensity plot for slit width = 0.25λ, focal distance a = 1.0λ,
lens thickness b = 2.0λ, image location = 4.0λ. The gain and absorption parameters for all of
these field intensity plots are ε′′ = µ′′ = ±10−3.

calculated in the limit of small gain and absorption.

τbefore(x, z, kx, ω) = e−κz+ikxx +
iφeκz(2b−2a+z)

1 + φ2 e2κzb
eikxx (9)

τin(x, z, kx, ω) =
eκz(z−2a) + iφ eκz(2b−z)

(1 + iφ)(1 + φ2 e2κzb)
eikxx (10)

τout(x, z, kx, ω) =
eκz(2b−z)

1 + φ2 e2κzb
eikxx (11)

where κz =
√

k2
x − ω2/c2, and the parameter

φ =
1

2

[
ε′′ +

ε′′ + µ′′

2(k2
x c2/ω2 − 1)

]
, where |φ| ¿ 1. (12)

Other work has stated that adding gain to a meta-material system compensates for losses by

creating transparency and enhancing field amplification. [17] Additionally, theoretical models

have proposed that alternating stacks of silver and amplifying dielectric medium compensate for

the losses in the superlens and create better resolution performance. [18] We contend that adding
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gain to the entire superlens does not enhance the magnitude of the H-field or field intensity

unless the gain compensates for losses exactly, which is very difficult to achieve experimentally.

Gain merely adds a phase of π to the loss parameter φ. Fig. 3 shows the absolute value of the

transfer in and out functions do not change for gain parameters. The transfer function symmetry

from absorption and gain parameters leads us to conclude that the resolving capabilities of the

superlens system is the same for equal absorption and gain conditions.

Our superlens simulations show that surface plasmon polariton (SPP) excitation occurs at

both lens interfaces in the symmetric configuration (2a = b) when the size of the system is

sufficiently small. In this regime the evanescent spectrum is the primary field component in

the signal as seen by Fig. 2. Amplification of evanescent waves at the lens boundaries allows

this imaging system to resolve subwavelength features by recovering field components that are

commonly lost due to exponential decay.

At the boundary of the diffraction limited region, when the focal distance is equal to the

wavelength of the source, the field maximums still occur at both interfaces but the propagating

region of the spectrum begins to increase as seen by Fig. 2. For focal distances beyond one

wavelength, field intensity maximums at both interfaces decrease as the propagating spectrum

components provide the majority of the wave behavior. Note that the maximums occur in the

center of the lens and at the image location for the symmetric configuration when the lens is in

the far-field.

We derive the resolution limit ∆ of the system by describing the spatial size of a wave packet

at the image location (x = 0; z = 2b). [16] If we define δ as the spectral width, or range of kx

values, then there is some kx value equal to δ/2 where the wavevector spectrum equals w/2.

w

2
= 4

sin(wδ/2)

δ
(13)

Now we make two substitutions to relate the spatial wave packet size to the spectral width

using the optical uncertainty principle. First set wδ = x, and then set 4πξ = x, to obtain the

resolution in terms of spectral width. For our single slit geometry the variable ξ ≈ 0.6.

∆ · δ = 4πξ (14)
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Figure 3: a) Transfer-in function at the front interface plotted as a function of focal distance aλ
and kx with ε′′ = µ′′ = 10−3. b) Transfer-out function at the back interface plotted as a function
of lens thickness bλ and kx with ε′′ = µ′′ = 10−3. c) The solid red line is the absolute value of
the transfer-out function at the image location with absorption given by ε′′ = µ′′ = 10−6. The
red dots are the absolute value of the transfer-out function at the image location with gain given
by ε′′ = µ′′ = −10−6. The dashed blue line is the absolute value of the transfer-in function at
the first focus with absorption given by ε′′ = µ′′ = 10−4. The blue dots represent the absolute
value of the transfer-in function with gain given by ε′′ = µ′′ = −10−4. The focal distance for the
third graph is 1.0λ, the lens thickness is 2.0λ, and the slit width is 0.1λ.

The previous equation is informative, but a more useful resolution equation depending on

lens thickness and system absorption can be derived by studying the transfer out function shown

in Eq(11). At some critical wavevector value k0
x = δ/2, τout = 1/2, so the resolution can be found

by solving the following transcendental equation.

2πb

λ
= −

ln 1
2

[
ε′′ + ε′′+µ′′

2χ2

]

χ
(15)

In the above equation χ =
√

k02

x c2/ω2 − 1 =
√

ξ2λ2/∆2 − 1. By assuming that we are in

the near-field regime where subwavelength resolution, ∆ ¿ λ, is possible we can further reduce

Eq(15) using the property χ ≈ ξλ/∆ to write an expression for the resolution of the symmetric

superlens configuration.

∆ ≈ − 2πb

ln(ε′′/2)
(16)

As stated previously, the lens thickness must be at least as large as the focal distance. When
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the lens thickness is exactly equal to the focal distance (a = b), the system is in the optimal

configuration. In the optimal configuration the image is located on the back interface, so infor-

mation can be easily gathered through the detector placement on the lens boundary. In addition

to the detection strengths, the optimal configuration provides the highest amount of subwave-

length field resolution. An equation describing the resolution of the optimal configuration is

shown below.

∆ ≈ − 2πa

ln(ε′′/2)
(17)

Transition to Diffraction Limited Imaging

The previous section described the near-field resolution capabilities of the planar NIM lens,

but what defines the near-field regime for this system? As the lens thickness is increased the

image moves further away from the source, therefore lens thickness is a general variable that

confines the imaging properties of the lens. System absorption is the other primary parameter

we chose to model. The primary mechanism for subwavelength resolution is the amplification

and recovery of evanescent field components at the image location. To understand the transition

to diffraction limited imaging behavior we calculate the evanescent and propagating fields from

a point source to compare their magnitudes as the lens thickness and system absorption vary.

Our point source term is represented by the Green function, GR = (i/4)hH
(1)
0 (ρk0), where

ρ =
√

x2 + z2, and the Hankel function H1
0 = J0 + iN0. [19, 20] Where our work differs is in the

use of an exact transfer function to calculate field components. To calculate field components at

the image location (z = 2b) we must integrate exact transfer out equations multiplied by delta

source terms. Below is the exact transfer out function from which the previous series solution

shown in Eq(11) was derived.

τexact = − 4εk1k2 exp(i(k1 + k2)b)

exp(ibk2)(k2 − εk1)− (εk1 + k2)2
(18)

The subscripts on the k values refer to the specific system region, where 2 is inside the lens

and 1 is outside the lens. The general propagating wavevector expression is written
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ki =

√
εiµi

ω2

c2
− k2

x (19)

To find the field resulting from the propagating and evanescent spectra solving the integrals

below is required. Note that the 1/k1 term in the integral was derived using fourier analysis of

the Green function source function.

~Hp =
∫ ω/c

−ω/c

τexact

k1

dkx (20)

~Hev =
∫ ∞

|kx|>ω/c

τexact

k1

dkx (21)

In the limit where kb >> 1 the propagating field component is a constant of order 1. As the lens

thickness increases the exact transfer out function can be simplified by neglecting the exponential

term in the denominator. The integrand in the evanescent field equation decays exponentially

for kx > ω/c. By taking a power series about ε′′ = µ′′ = 0 the propagating wavevector to first

order takes the form

k2
∼= k1 − 1

2

i(ε′′ + µ′′)
k1

ω2

c2
(22)

By using the k2 definition above with the reduced exact transfer out equation we are able to

provide a very useful analytical expression for the evanescent field at the image location. If we

define α =
√

1
2
(ε′′ + µ′′) the evanescent field at the image location is described by the expression

below.

~Hev
∼= 4c2

ω2b2α
exp(−ω

c
αb)

cos(ω
c
)αb− i sin(ω

c
)

(1− i)
(23)

The criteria used to describe the transition from subwavelength to diffraction-limited imaging

is the ratio P = |Hev |
|Hp| . When P << 1 the system is in the diffraction-limited far-field regime,

and when P >> 1 the imaging system can have superresolution. A general variable containing

information about the total system absorbtion and lens length is defined as a fundamental

parameter of P . The variable k0 is defined to be ω/c.
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S = k0b

√
Im

(
ε + µ

2

)
= k0b

√
δ (24)

When S << 1 the planar lens ratio is defined as

P (S) =
1

k0b

4(i sin(S)− cos(S)) exp(−S)

S(i− 1)
<< 1 (25)

When S >> 1 the planar lens ratio is defined as

P (S) ' 2

iπ
ln

[
−2 ln (δ/4)

k0b

]
(26)

Our transition analysis provided us with data that describes the transition from near-field to

diffraction limited far-field lens behavior as a function of lens thickness and system absorption.

In addition to describing fields from the propagating and evanescent spectra, we used numerical

integration and root finding computational techniques to find lens thickness and absorption

data points corresponding to image location evanescent field magnitudes that are equal to some

fraction of the propagating field.

Figure 4: Normalized transition lens thickness and absorption data for the Planar NIM lens
with a point source. Absorption values range from 10−6 < ε′′ < 0.25. Data was found by setting
Hev = q ·Hp. Blue triangle data points correspond to q = 1. Light blue solid boxed data points
correspond to q = 1/2. Red stars correspond to q = 1/4. Pink diamond data points correspond
to q = 1/8. Black hollow triangles correspond to q = 1/16.
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Figure 5: Functional behavior of the ratio |P | for δ = 10−2 (solid triangles), δ = 10−3 (boxes),
δ = 10−4 (stars), and δ = 10−18 (hollow triangles). Symbols are results of numerical integration
while dashed and dotted lines represent approximate equations shown in Eq(26, 27).

Far-Field Diffraction Limited Imaging Properties of the Superlens

To discuss the resolution limitations of the superlens in the far-field, we consider a point

cylindrical wave source located at x = 0, z = 0. Source waves are projected onto the front lens

interface, with coordinates x = x1 and z = a, and then collected again at the first focus when

z = 2a. It has been shown that the smearing of the foci at the first and second focal points are

equal, accordingly, only the first will be considered in this work. [19, 20] The field inside of the

lens region is given by the Fresnel integral

H(x, z) =
∫ ∞

−∞
a

(a2 + x2
1)

1
2

Exp
[
i · k (a2 + x2

1)
1
2

]

(a2 + x2
1)

1
4

Exp
[
−i · k ((z − a)2 + (x1 − x)2)

1
2

]

((z − a)2 + (x1 − x)2)
1
4

dx1 (27)

The first term of Eq (27) describes the propagating k component of the cylindrical source

given some kx value, the second term represents the projection of the cylindrical source waves

onto the lens interface, and the third term represents individual source waves at z = a moving

inside the lens to the first focus. By making a substitution η = z − 2a, and taking the series of

the above equation close to the first focal point we get the expression

H(x, z) =
∫ ∞

−∞

Exp

[
i · k (x1x−aη)

(a2+x2
1)

1
2

]

a2 + x2
1

dx1 (28)
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By substituting x1 = a tan u we obtain the field in an integral form that can be calculated

numerically.

H(x, z) =
1

a

∫ π
2

−π
2

Exp[i · k(x sin u− η cos u)]du (29)

Figure 6: a) Numerical plot of H-Field intensity at the first focus z = 2a using Eq (29). b)
Numerical plot of H-Field intensity at the first focus using Eq (8) with 100 dkx iterations. c)
Two dimensional x and z cross-sections around the first focus. Dotted data points are from the
Eq (8) calculation. Notice the the field is not confined symmetrically in the x and z directions.

Although the full field calculation must be solved numerically, the x cross section (η = 0) and

the z cross section (x = 0) can be solved for analytically. First we will start by defining a new

angle with the properties tan ψ = η
x

and then turn Eq (29) into

H(x, z) =
1

a

∫ π
2

−π
2

Exp[i · k
√

x2 + η2 sin(u− ψ)]du (30)

As η → 0, ψ → 0, the field expression for the x cross section becomes π
a
J(0, kx). As x → 0,

ψ → π
2
, the field expression for the z cross section becomes π

a
(J(0, kη)− iH(0, kη)), where J is a

Bessell function and H is a Struve function. The imaginary part of the field expression for the z

cross section makes the field intensity plot anti-symmetric. The resolution of the far-field system

based on full width half maximum H-field intensity measurements is limited because the image

at the first focus is confined anti-symmetrically. We would also like to note that the H-Field at
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the first focus is confined to a region smaller than λ/2 in the far-field measurements, but we do

not consider this to be subwavelength imaging.

Conclusions

Subwavelength resolution is achieved by the planar NIM lens in the near-field regime due

to amplification and recovery of evanescent field components. Single slit source analysis shows

the formation of Surface Plasmon Polaritons at both lens interfaces, which could give rise to

interesting new optical devices. By using a point source and Green’s function analysis combined

with exact transfer functions for the system we were able to classify the transition to diffraction

limited imaging behavior as a function of system absorption and size. Far-field analysis was

performed by calculating fields using a Fresnel integral to show asymmetric field confinement

and diffraction limited resolution.
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